
2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

1

Efficient Replica Migration Scheme for
Distributed Cloud Storage Systems

Amina Mseddi, Student Member, IEEE, Mohammad A. Salahuddin, Member, IEEE,
Mohamed Faten Zhani, Senior Member, IEEE, Halima Elbiaze, Member, IEEE,

and Roch H. Glitho, Senior Member, IEEE

Abstract—With the wide adoption of large-scale internet services and big data, the cloud has become the ideal environment to satisfy
the ever-growing storage demand. In this context, data replication has been touted as the ultimate solution to improve data availability
and reduce access time. However, replica management systems usually need to migrate and create a large number of data replicas
over time between and within data centers, incurring a large overhead in terms of network load and availability. In this paper, we
propose CRANE, an effiCient Replica migrAtion scheme for distributed cloud Storage systEms. CRANE complements any replica
placement algorithm by efficiently managing replica creation in geo-distributed infrastructures in order to (1) minimize the time needed
to copy the data to the new replica location, (2) avoid network congestion, and (3) ensure the minimum desired availability for the data.
Through simulation and experimental results, we show that CRANE provides a sub-optimal solution for the replica migration problem
with lower computational complexity than its integer linear program formulation. We also show that, compared to OpenStack Swift,
CRANE is able to reduce by up to 60% the replica creation and migration time and by up to 50% the inter-data center network traffic
while ensuring the minimum required data availability.

Index Terms—Cloud storage, data availability, data migration, replica management

F

1 INTRODUCTION

W ITH the wide adoption of large-scale Internet services
and the increasing amounts of exchanged data, the

cloud has become the ultimate resort to cater to the
ever-growing demand for storage, providing seemingly
limitless capacity, high availability and faster access time.
Typically, cloud providers build several large-scale data
centers in geographically distributed locations. They then
rely on data replication as an effective technique to improve
fault-tolerance, reduce end-user latency and minimize
the amount of data exchanged through the network.
Consequently, effective replica management has become one
of the major challenges for cloud providers [1].

In recent years, a large body of work has been devoted
to address this challenge and, more specifically, to address
the problem of replica placement considering several goals,
such as minimizing storage costs, improving fault-tolerance
and access delays [2], [3], [4], [5], [6]. However, replica
placement schemes may result in a large number of
data replicas created or migrated over time between and
within data centers, incurring significant amounts of traffic
exchange. This might happen in several scenarios requiring

• A. Mseddi and H. Elbiaze are with the Department of Computer Science,
University of Quebec at Montreal, Montreal, Quebec, Canada.
E-mail: mseddi.amina@courrier.uqam.ca,
E-mail: elbiaze.halima@uqam.ca.

• M. A. Salahuddin is with the David R. Cheriton School of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada.
E-mail: mohammad.salahuddin@ieee.org

• M. F. Zhani is with the Department of Software and IT Engineering, École
de Technologie Supérieure (ÉTS Montreal), Montreal, Quebec, Canada.
E-mail: mfzhani@etsmtl.ca

• R. H. Glitho is with Concordia Institute for Information Systems
Engineering, Concordia University, Montreal, Quebec, Canada.
E-mail: glitho@ciise.concordia.ca

the creation and the relocation of a large number of replicas:
when a new data center is added to the cloud provider’s
infrastructure, when a data center is scaled up or down,
when recovering from a disaster or simply when replicas
are relocated to achieve performance or availability goals.

Naturally, several impacts may be expected when such
large data bulk transfer of replicas is triggered. First, as
copying data consumes resources (e.g., CPU, memory, disk
I/O) at both the source and the destination machines, these
nodes will experience more contention for the available
capacity, which may slow down other tasks running
on them. Second, recent research revealed that traffic
exchanged between data centers account for up to 45% of
the total traffic in the backbone network connecting them
[7]. This ever-growing exchange of tremendous amounts
of data between data centers may overload the network,
especially when using the same paths or links. This can
hurt the overall network performance in terms of latency
and packet loss. Moreover, replica migration processes are
usually distributed and asynchronous as is the case for
Swift, the OpenStack project for managing data storage [8].
That is, when a replica is to be relocated or created in a new
destination machine, every machine in the infrastructure
already storing the same replica will try to copy the
data to the new destination. There is no coordination or
synchronization between the sending nodes. This will not
only lead to unneeded redundancy as the same data is
copied from different sources at the same time, but will also
further exacerbate the congestion in the data center network.
Finally, Replicas are usually placed in geographically
distributed locations in order to increase data availability
over time and reduce user-perceived latency. When a replica
has to be created/migrated in a new location, it will not be

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

2

available until all its content is copied from other existing
replicas. If this process takes too long, it might hurt the
overall data availability if the number of available replicas is
not sufficient to accommodate all user requests. For instance,
in order to ensure data availability, Swift ensures that at least
two replicas of the data are available at any point in time
(according to the default configuration [8]).

In order to alleviate all the aforementioned problems,
it is critical to make sure that replicas are created as soon as
possible in their new locations without incurring network
congestion or high creation time. This requires to carefully
select the source replica from which the data will be copied,
the paths through which the data will be transferred and the
order in which replicas will be created.

To address these challenges, we propose CRANE an
efficient replica migration scheme for distributed cloud
storage systems. CRANE is a novel scheme that manages
replica creation in geo-distributed infrastructures with the
goal of (1) minimizing the time needed to copy the data to
the new replica location, (2) avoiding network congestion,
and (3) ensuring a minimal availability for each replica.
CRANE can be used along with any existing replica
placement algorithm in order to optimize the time to create
and copy replicas and to minimize resources needed to
reach the new placement of the replicas. In addition, it
ensures that at any point in time, data availability is above
a predefined minimum value.

This paper is an extension of our previous work [9]. It
provides a more comprehensive overview of existing replica
migration solutions and compares them to CRANE. We
also extend the performance evaluation results to run real
experiments and also realistic simulations for large-scale
infrastructures. Hence, we have implemented CRANE and
integrate it into OpenStack. We use this implementation
to run real experiments that show the performance of
CRANE over OpenStack Swift for different scenarios. We
also compare the solution found with CRANE with the
optimal solution found by the ILP of the problem that we
have proposed and implemented using IBM ILOG CPLEX
optimizer [10]. We implemented the replica migration
problem with AMPL [11].

This paper is organized as follows. Section 2 surveys
the related work on replica placement and migration
in the cloud. Section 3 presents an example illustrating
how replica creation and migration strategy can impact
performance metrics. In Section 4 we formulated the replica
migration problem as an Integer Linear Program (ILP).
We then present our proposed solution in Section 5. We
describe in Section 6 the simulation and experimental results
comparing the optimal replica migration plan found by
the ILP to that found with CRANE and OpenStack Swift.
Finally, we conclude in Section 7.

2 RELATED WORK

A large body of work has been devoted to data management
in distributed storage systems. As our work is tightly related
to data and replica management in storage clouds, we first
present existing literature on data migration in general then
focus on replica placement and migration work.

2.1 Data Migration
The data migration problem aims at finding an
efficient schedule to move large amounts data between
infrastructures. The basic migration problem is the case
where all storage devices have point to point and equal
capacity links, data objects have the same size and have
one copy and all devices can migrate one data object at
a time. To address this problem, researchers have applied
multigraph edge-coloring algorithms to produce efficient
data migration schedule [12], [13], [14]. The idea is to
model the migrations between different infrastructure as the
edges of a graph where the nodes are the data source and
destination. Edges with the same color represent migrations
that can be scheduled simultaneously. However, finding a
migration plan with the minimum number of rounds is
NP-hard.

Kari et al. [14] proposed a scheme that tries to find
an optimal migration schedule for data that minimizes the
total migration time while taking into consideration the
heterogeneity transfer capacity of storage nodes. However,
their solution overlooks availability requirements as well as
network-related constraints such as bandwidth limits and
propagation delays.

Wu et al. [15] have designed a service that schedules
the dynamically-arising inter-data center migration requests
with different urgency levels requiring different data
transfer finishing deadlines. These migration requests can
be optimally and dynamically arranged to fully exploit the
available bandwidth at any time. Therefore, in our work,
we are going to deal with multiple replicas of the same
data, so that we can choose the source of the migration
to fully exploit the available bandwidth of the network
linking different data centers. Besides, their work deals
with different finishing migration deadlines for each data.
In our case we aim to minimize as much as possible
the overall migration time. [16] have also considered
dynamically-arising inter-data center migration requests.
They proposed a control-theoretical approach to statistically
guarantee a bound on the amount of impact on foreground
work during a data migration, while still accomplishing the
data migration in as short a time as possible. Works that
consider dynamically-arising inter-data center migration
requests, often have to make decisions either to accept the
request or not. However in our work we satisfy all migration
requests. That is we find the optimal migration schedule to
reach the new optimal placement of replicas.

Petrol et al. [17] proposed an optimization plan to data
migration in order to speed up scaling the cloud. For that,
they have divided migrations tasks on scaling migrations
and residual migration. Indeed scaling migrations considers
data transfer to adjacent nodes and residual migrations are
for more distant nodes.

2.2 Replica management
Recently, cloud data centers are being created in large
numbers [18], [19], [20]. This trend is driven primarily by the
need to place data closer to customers to improve QoS [1]
and to provide failure tolerance [21]. Moreover, in order to
achieve these objectives, data replication is often considered.
In fact, the right placement of these replicas leads to

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

3

minimization of communication cost [5], maximization of
availability [1], [5], [6] and improvement in QoS [1], [22].
Over time, and depending on the targeted performance
objectives, some replicas are torn down and others should
be created or migrated across the infrastructure. Such
operations might have a huge overhead and impact on the
overall performance. Recently, few proposals have tried to
address this problem and designed efficient replica creation
and migration schemes with the goal of minimizing such
overhead [23], [24], [25], [26].

For instance, S. Khuller et al. [23] mapped replica
migration problem to the gossiping and the broadcasting
problems and proposes several approximation algorithms
to solve the problem in order to minimize replica migration
time. N. Tziritas et al. [24] have considered two selection
criterion options for selecting the replicas to transfer first,
namely Earliest Start Time (EST) and the Earliest Completion
Time (ECT), computed based on the transfers that have been
scheduled and the available link bandwidth.

T. Loukopoulos et al. focus on minimizing bandwidth
consumption during the replica creation [26], [27]; however,
they assume that the links have the same capacity. In [25],
the authors have studied the case where the same object
needs to be migrated to multiple destinations. They hence
use the best multicast-tree (Steiner tree) to migrate objects
to other servers. However, this solution requires all the
intermediate nodes to be able to start forwarding the object
on the fly even if they do not have the entire object.

Swift, the OpenStack project for managing data
storage [8], implements a replica placement algorithm
along with a replica migration scheme. Using Swift, blocks
of data (called also partitions) has a defined number
of replicas (three by default) that are distributed across
the infrastructure according to the as-unique-as-possible
algorithm [28]. This algorithm ensures that replicas are
physically stored as far as possible from each other in
order to improve data availability. Swift computes the
optimal replica placement periodically with a predefined
time interval (usually, one hour) and then triggers replica
migration to reach the new optimal placement. However,
it limits to one the number of migrations per partition so
as to ensure that at least two replicas are available at any
time. Such constraint increases the time needed to reach the
new optimal placement, especially when multiple replicas
of the same partition need to be created. Furthermore,
Swift does not take into consideration available bandwidth
in the network when migrating replicas between different
locations, which might cause congestion in the network.

Different from previous work, CRANE takes into
account not only the network available bandwidth but also
data availability during the creation of the new replicas. It
also capitalizes on the existence of multiple replicas across
the network to carefully select the source of the data and
the transmission path so as to avoid network congestion
and minimize data migration time.

Table 1 compares the surveyed proposals in terms of
assumptions and goals. As seen in the table, CRANE work
is the first to focus on minimizing the migration time while
taking into consideration the required data availability
and, at the same time, avoiding network congestion.

3 MOTIVATING EXAMPLE

To introduce our proposed replica placement solution,
we provide in this Section a motivating example to highlight
some limitations of distributed storage systems. Let us
consider a cloud system composed of two data centers
(DC1 and DC2) located at different geographic regions
and connected through a backbone network, as shown in
Fig. 1(a). We use Swift to manage the storage distributed
over the two data centers. We assume that we have 4
partitions A, B, C and D with sizes 300 GB, 100 GB,
500 GB and 200 GB, respectively. Each partition has 4
replicas that are placed by the as-unique-as-possible algorithm
that strives to increase data availability. Fig. 1(a) shows
the initial mapping of the replicas across the infrastructure.
For instance, the four replicas of partition A (denoted by A1,
A2, A3 and A4) are distributed across the two data centers.
The same applies to the other partitions.

(a) Initial replica mapping with two data centers

(b) Final replica mapping after adding a third data center

Fig. 1. Replica Relocation

When a new data center is added to the infrastructure
(i.e., DC3), replicas are relocated again according to the
as-unique-as-possible algorithm used by Swift [28]. Fig. 1(b)
shows the optimal locations of the replicas according to
the as-unique-as-possible algorithm. During this relocation,
two issues could arise. Firstly, the amount of exchanged
data to create the replicas could be huge and could
overload the network. Secondly, the replicas that are not
yet created or are in the process of being created are
unavailable, and thus cannot process clients’ requests.
Indeed, the management tool that directs user requests to
the appropriate locations of data should have an updated
view of all replica placements. In Swift, the new placement
is used to direct clients’ requests, even before the migration

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

4

TABLE 1
Comparison of replica migration schemes

S. Khuller et
al. [23]

T. Tziritas et
al. [24]

T.
Lookopoulos
et al. [26]

T.
Lookopoulos
et al. [27]

T. Tziritas et al.
[25]

OpenStack
Swift [8] CRANE

Assumptions
Object
Size Equal Different Equal Different Different Different Equal

Links Equal capacity Different
capacities

Equal capacity
but different
cost

Equal capacity
but different
cost

Different
capacities

Paths between
servers have
overlapping
links with
different
capacities

Paths between
servers have
overlapping
links with
different
capacities

Bypass
Nodes

Using bypass
nodes to
minimise
migration time

No No No No No No

Goals

Minimize
migration
time

Approximation
algorithms for
broadcating
and gossiping
problems

Heuristics
scheduling
transfers with
the earliest
completion
time or the
smallest hop
count

No No

Heuristics
using
multicast
trees

No

Choosing
replica with
earliest
completion
using the path
capacity.

Minimize
migration
cost

No No Minimizing
network usage

Heuristics for
minimizing
network cost,
scheduling
deletion and
migration of
replicas

No No No

Ensure
minimum
data
availability

No No No No No

Recalculate
replica
placement
each 1-hour,
and change the
placement of
one replica of
same partition
at each new
placement

Use parallel
migrations
that ensure
the minimum
availability of
data

finishes. That is, the management tool becomes oblivious
to the old placement of replicas. Therefore, some client
requests may be directed to the new placement, even if some
replicas haven’t yet wholly arrived at their final destination,
thus negatively impacting availability. Moreover, to ensure
availability of data during migration, the management tool
limits the number of migrating replicas of each data for
a time interval. Indeed, a new placement of replicas is
computed after 1-hour delay to move only one replica of
each data in the respective interval, with the assumption
that the availability of replicas will be ensured (i.e., all
clients’ requests will be accommodated).

Thus, Swift tries to satisfy data availability requirement
by ensuring that at least 3 out of 4 replicas are available
at any time. Fig. 2(a) shows the replica migration sequence
using Swift. The x-axis represents time and the y-axis shows
the replica identifiers of each partition. We can see in the
figure that migrations are triggered every hour and only one
replica of each partition can be migrated at a time during the
beginning of the time interval.

However, using the swift replica creation and migration
scheme, the following metrics could be affected:

• Availability: The time interval separating the migrations
of the same partition replicas is a parameter defined by the
storage provider (by default it is set to 1 hour in Swift),
which is not optimal. For instance, if two replicas of the
same partition need to be migrated, Swift migrates the first
one in the current time interval and the second one in
the following time interval. However, if the migration of
the first replica takes more than one hour, there will be
two replicas being migrated at the same time and hence
will not be available to process clients’ requests. Fig. 2(a)
shows how this happens in the studied example. At t = 0,
Swift is creating the replica C4 (hosted in DC3) and it
takes more than one hour to copy the data (8 minutes
more as shown in the figure). During this time, C4 is not
available. At the second time interval (i.e., at t = 1 hour),
C3 starts being migrated and hence becomes unavailable.
As a result, replicas C3 and C4 are both not available
during the first 8 minutes of the second time interval and
only the other 2 replicas (C1 and C2) are available. This
clearly violates the replica availability requirement for the
partition C (i.e., 3 replicas out of 4).

• Redundancy and migration time: Replica migration

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

5

(a) Swift replica migration sequence

(b) An example of a better replica migration sequence

Fig. 2. Replication migration sequences

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

6

in Swift is a peer-to-peer asynchronous and distributed
process. Each storage server that holds a replica of a
partition will sequentially check all the other replicas and
update them if necessary. As a result, when a new replica is
created, several other replicas might start sending data at the
same time to the new location. This redundancy consumes
additional bandwidth, which might overload the network.
Fig. 2(a) shows how replica D4 is created using data copied
from replicas D3 (located at DC1) and D4 (located DC2)
at the same time (at t = 0). Ideally, redunduncy should
be avoided and the source of the data could be selected
based on the available bandwidth and the propagation
delay between data centers in order to reduce migration
time and the bandwidth consumption.
• Idle time: To ensure data availability, Swift restricts

the number of replicas of the same partition that could be
moved during one time interval to one replica. However, the
migration of the replica can finish in less than one hour and
hence, the system remains idle until the next time interval,
as shown in Fig. 2(a). This increases the overall time needed
to create and migrate replicas and to reach the new mapping
configuration. As a result, an efficient migration sequence
should avoid this idle time while ensuring the availability
of the replicas by carefully sequencing their migration.

To avoid the aforementioned drawbacks, we need
to i) avoid the redundancy when copying replicas to
decrease bandwidth consumption, ii) carefully select the
source replicas in order to reduce the migration time,
iii) ensure the replica availability during the data migrations
(i.e., 3 replicas out of 4 should be available at any time), and
finally iv) avoid idle times in order to reduce the overall
migration time. Fig. 2(b) shows an example of a migration
sequence that achieves these objectives and reaches the final
replica mapping with a migration time less than 50% of the
one achieved by Swift.

In this paper, we propose CRANE a novel replica
migration solution able to generate near-optimal replica
migration sequences that achieve the sought-after
objectives. In the following, we start first by mathematically
formulating the problem before presenting the details
of CRANE.

4 THE REPLICA MIGRATION PROBLEM

The replica migration problem aims to find an optimal
sequence of migrations from an initial to a final placement.
As each partition has several stored replicas across the
servers, the optimal migration sequence should select
the best sources for migration. The goal is to minimize
the replica migration time while meeting the minimum
partition availability threshold A and abiding by links
bandwidth capacity. Moreover, we assume that servers
perform continuous sequential migrations.

Availability threshold is the minimum number of
replicas that should not be migrating simultaneously. That
is, if there are more than A replicas that are not migrating,
the data is considered to be available. This is dictated by
the fact that a management tool responsible for redirecting
user requests to the appropriate replica placement only
knows the final placement of replicas. Thus, the replica will

be available only when it has entirely arrived at its final
destination.

On the other hand, the topology that connects the
storage devices is composed of different capacity links that
are only dedicated to the migration process. Separating
management network from ”users” network has been
considered by many cloud providers in order to improve
the security and the performances of their system [15], [29],
[30].

4.1 Problem Statement
Given a network represented by a graph G = (S, E),
where S =

{
s1, s2, ..., si, ..., sk, ..., s|S|

}
is the set of all

servers across data centers. We assume that data centers
are connected through a backbone network. The backbone’s
links are represented by a set of edges E. Each edge
e ∈ E is characterized by a bandwidth capacity Be. Let
P = {p1, p2, ..., pj , ..., p|P |} denote the set of partitions,
replicas of which are stored across the servers where
|pj | is the size of replica of partition pj . We define a
configuration as a particular placement of the replicas
of partitions within servers. Given an initial and a final
configurations denoted respectively by CI and CF , any
discrepancy in the configurations necessitates either the
migration or the deletion of the partition replicas. Consider
that the migration or deletion of the replica is identified by
variables yj,k and dk,j , respectively. Our goal is to find the
optimal sequence of replica migrations that minimizes each
replica migration time and the total migration time from
CI to CF while meeting the minimum partition availability
threshold A and abiding by edge bandwidth capacities. We
model this as an Integer Linear Programming (ILP) problem.
Tables 2 and 3 show respectively the inputs of the ILP and
its variables.

4.2 Constraints
Before we can initiate the migration, we identify the servers
si that hold the replica of partition pj at time t using
the variable zi,j,t. In our model, only the servers si that
hold a replica of partition pj can participate to the replica
migration.

Furthermore, we consider that if a server si holds a
replica of the partition pj in the initial configuration, this
replica cannot be deleted and is kept alive during all time
instances in the considered time span [1, T − 1] except the
last time instance (i.e., T), as shown in constraint (1). The
goal of this constraint is to provide the model with more
possibilities when selecting the source as it allows to use the
server si as a source to create new replicas of pj even if this
replicas has to be deleted to reach the new configuration.

cIi,j ≤ β · zi,j,t ∀ 1 ≤ i ≤ |S| , 1 ≤ j ≤ |P | , 1 ≤ t ≤ T − 1
(1)

In constraint (2), we ensure that a server si cannot
participate in the migration process of pj , if it does not hold
a replica of pj in the initial or in the final configuration.

zi,j,t ≤ cIi,j+cFi,j ∀1 ≤ i ≤ |S| , 1 ≤ j 6= 0 ≤ |P | , 1 ≤ t ≤ T
(2)

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

7

TABLE 2
Problem inputs

Input Definition

S
Set of servers across data centers, where S ={
s1, s2, ..., si, ..., sk, ..., s|S|

}
E Set of edges connecting servers in S
Be Bandwidth capacity ∀e ∈ E

P
Set of partitions, where P =

{
p1, p2, ..., pj , ..., p|P |

}
and

|pj | is the size of partition pj

CI

|S| × |P | matrix representing an initial configuration,

where cIi,j =

{
1, if replica of pj is stored on si
0, otherwise

CF
|S| × |P | matrix representing a final configuration, where

cFi,j =

{
1, if replica of pj is stored on si
0, otherwise

Y

|P | × |S| matrix representing a need for partition
migration, where yj,k ={

1, if replica of pj needs to be migrated to server sk
0, otherwise

A
Availability threshold, the minimum number of replicas to
be kept stable

M
Total number of replicas per partition, a Swift parameter
set by the system administrator (M > A)

T Worst-case migration time

G
|S| × |S| × |E| matrix representing edges used in a path,
where

gi,k,e =

{
1, if edge e is used in shortest

path between si and sk
0, otherwise

α A unit time
β A big constant

TABLE 3
Problem variables

Variable Definition

X

|S| × |P | × |S| × T matrix representing migration
sequence, where xi,j,k,t ={

1, if si is migrating replica of pj to sk at time t
0, otherwise

Z
|S| × |P | × T matrix representing replica placement,

where zi,j,t =
{

1, if si has replica of pj at time t
0, otherwise

R
|S| × |P | × |S| × T matrix, where ri,j,k,t represents the
bandwidth allocated for migrating replica of pj from si to
sk at time t

W
A vector of size T , where
wt =

{
1, if migration is in progress at time t
0, otherwise

The variable zk,j,t that indicates potential sources of
replicas is updated in each time instance t, as servers sk
may begin to hold a copy of the replica of partition pj , due
to migration in earlier time instances, if this server hasn’t
this replica in initial configuration, as in constraints (3) and
(4). A server holds a copy of the replica when the sum
of all the bandwidth allocated, ri,j,k,t′ to the migration of
that replica of partition pj from source sj to destination
sk, in previous time instances ∀t′ < t, equals the size of
the partition pj . Then, in following time instances, server sk
could potentially participate in the replica migration.

|pj | −
|S|∑

i=1,i6=k

t∑
t′=1

ri,j,k,t′ · α ≤ β · (1− zk,j,t+1)

∀1 ≤ k ≤ |S| , 1 ≤ j, cIk,j = 0 ≤ |P | , 1 ≤ t ≤ T − 1 (3)

1− zk,j,t+1 ≤ |pj | −
|S|∑

i=1,i6=k

t∑
t′=1

ri,j,k,t′ · α

∀1 ≤ k ≤ |S| , 1 ≤ j, cIk,j = 0 ≤ |P | , 1 ≤ t ≤ T − 1 (4)

Once the model has been initialized with potential
providers, we can initiate migration by associating the
replica of partition migration indicator variable xi,j,k,t with
need for migration of replica of partition pj from si to sk, in
yj,k, in constraint (5).

yj,k ≤
T∑

t=1

xi,j,k,t ∀1 ≤ i, k, i 6= k ≤ |S| , 1 ≤ j ≤ |P |

(5)
Furthermore, in constraint (6), we bind the source server

si, such that, only those servers that hold complete replica
of partition pj can initiate migration.

|S|∑
k=1

xi,j,k,t ≤ zi,j,t ∀1 ≤ i ≤ |S| , 1 ≤ j ≤ |P | , 1 ≤ t ≤ T

(6)
We ensure only sequential migration of replicas, since

concurrency is set to 1. Constraint (7), ensure that each
server can migrate only one replica at each time t.

|P |∑
j=1

|S|∑
k=1

xi,j,k,t ≤ 1 ∀1 ≤ i ≤ |S| , 1 ≤ t ≤ T (7)

To ensure continuous sequential migration of replica of
partition pj , from the same source server si to the same
destination server sk for next time instance t+ 1, we set the
indicator of migration is progress, in variable xi,j,k,t+1, to
1, until the entire replica of the partition has been migrated.
This is depicted in constraint (8).

|pj | −
t∑

t′=1

ri,j,k,t′ · α ≤ β · xi,j,k,t+1

∀1 ≤ i, k, i 6= k ≤ |S| , 1 ≤ j ≤ |P | , 1 ≤ t ≤ T − 1 (8)

We also denote by A the minimum number of replicas
to be kept stable (i.e., they should not be migrating at any
given time t) in order to ensure the availability requirement.
In other words, during any time t, the number of replicas of
a particular partition that could be migrating should be less
than or equal to (M − A), where M is the total number of
replicas per partition. This is depicted in constraint (9).

|S|∑
i=1

|S|∑
k=1

xi,j,k,t ≤M −A ∀1 ≤ j ≤ |P | , 1 ≤ t ≤ T (9)

Furthermore, we need to ensure that the total bandwidth
allocated for migrating replica of partition pj from server si
to server sk does not exceed the size of the partition pj , in
constraint (10).

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

8

T∑
t=1

ri,j,k,t · α ≤ yj,k · |pj | ∀1 ≤ i ≤ |S| , 1 ≤ t ≤ T (10)

The load on an edge, not exceeding edge capacity, is
conjured as the sum of all partition replicas migrating in the
network across all source and destination servers at time
t, on edge e in the shortest path between si and sk, by
constraints (11).

|S|∑
i=1

|P |∑
j=1

|S|∑
k=1

gi,k,e · ri,j,k,t ≤ Be

∀1 ≤ e ≤ |E| , 1 ≤ t ≤ T (11)

The total migration time is extended to include all
migrations in progress in constraint (12) and stopping the
migration process in constraint (13).

xi,j,k,t ≤ wt

∀1 ≤ i, k, i 6= k ≤ |S| , 1 ≤ j ≤ |P | , 1 ≤ t ≤ T (12)

wt+1 ≤ wt ∀1 ≤ t ≤ T − 1 (13)

4.3 Objective

minimize

 T∑
t=1

wt +

|S|∑
i=1

|P |∑
j=1

|S|∑
k=1

T∑
t=1

xi,j,k,t

 (14)

In order to have a migrating replica available as quickly
as possible on the destination server, we minimize the
migration time for each replica. Furthermore, to ensure that
migrations are triggered as soon as possible, we minimize
the total migration time. These objectives are depicted in
(14). As the optimization minimizes migration times, it
will select source servers for replica migration that reduce
migration time, such that it selects source-destination pairs
that have minimum overlapping edges in the shortest path,
while ensuring sequential migrations, meeting minimum
partition availability threshold and abiding by edge
bandwidth capacities.

5 SOLUTION DESIGN

In this section, we will describe CRANE, our heuristic
solution for the replicas migration problem. Given an initial
and a target replicas mapping in data centers, the goal of this
algorithm is to find the best sources for copying the replicas
and the best sequence to send them so as to minimize
the total replica creation/migration time. To this end, the
following sights can guide the replica creation/migration
sequence: (1) avoid redundancy, (2) select the source of data
and paths having more available bandwidth, and (3) avoid
idle time between sequences.

Our heuristic solution is described in Algorithm 1. Given
an initial and target placement configurations (i.e., CI and
CF), Algorithm 1 returns a set Q of sequences Qi for
migration. Each sequence contains an ordered set of replicas
to be migrated/created such that the required minimum

Algorithm 1 CRANE

require: Initial configuration CI

require: Final configuration CF

output: Sequence for migration

1: P ← {(p, d)}
2: Q← {∅}
3: i← 0
4: while P 6= {∅} do
5: Qi ← {∅}
6: Pi ← {P}
7: while Pi 6= ∅ do
8: TQi,min ←∞
9: for each (p, d) ∈ Pi / {migrating(p) < M −A} do

10: for each rsrc ∈ Rp / {is busy(src,Qi) = False}
do

11: if TQi,rsrc < TQi,min then
12: TQi,min = TQi,rsrc

13: rs = rsrc
14: ds = d
15: end if
16: end for
17: end for
18: Qi = Qi ∪ (rs, ds)
19: Pi = Pi − {∀(p, d) / p is partition of replica rs}
20: P = P − {partition p of replica rs to destination d}
21: end while
22: Q = Q ∪Qi

23: i← i+ 1
24: end while
25: return Q

availability per partition is satisfied. After each sequence of
migrations Qi, cloud storage components will be updated
with the new placement, so that data user requests can be
redirected to the right partition locations. The final replica
placement is reached once all the sequences Qi, i < n are
executed.

Initially, P contains the set of couples (p, d), where p
is a partition that needs to be created/migrated in the
destination server d. This set can be computed based on
the initial and the final partition locations (i.e., CI and CF).
We then initialize Q that should contain the sequence of
replicas to be migrated. In line 3, we initialize a variable
i that denotes the number of the sequence. The core of
the algorithm aims to iteratively add a partition replica on
ordered sequence Qi. We create a new sequence whenever it
is not possible anymore to add a replica creation/migration
to the current sequence (not possible because otherwise
we do not satisfy the minimum replica availability per
partition). Pi represents the set of couples (p, d) that can be
created in the sequence Qi without violating the minimum
required availability for replicas.

As long as Pi contains partitions to be created we can
still add a replica in a sequence Qi. However, this should
not violate the required availability. For that, we iterate over
partitions that have less than M − A migrating replicas,
where M is the total number of replicas per partition and A
is the number of replicas to be kept stable. Then, we iterate

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

9

over all replicas in Rp, where Rp is the set of replicas of
partition p and the server containing the replica r is not
copying another replica at the same time (line 10).

We choose the replica rs and the destination server
ds that minimize the migration time. For that we use
the variable TQi,rsrc that denotes the time to migrate the
sequence Qi if replica rsrc is included. TQi,rsrc is computed
considering links states during the migration of all replicas
in the sequence Qi. We compare this variable to the TQi,min

variable that denotes the minimum migration time of
sequence Qi after adding a replica (line 11). This allows us
to select the best replica rs of the partition p from all replicas
of all partitions (line 13). The chosen replica and destination
server are then added to Qi (line 17). The couple (p, ds) is
removed from the set P , where p is the partition whose
replica rs was selected and ds is the destination server
where the partition will be created. To ensure availability,
we remove all couples (p, d), where p is the partition
whose replica rs was selected. Thus, we ensure that only
one replica of the same partition is migrated in the same
sequence.

When Pi doesn’t contain any more couples to migrate,
we detect that we cannot add any more replica to the
sequence Qi. At that time, we add the sequence to Q (Line
22), and start a new one as long as we still have partitions in
P to migrate/create. The time complexity of this algorithm
is O(|P |2), where |P | is the number of partitions.

6 PERFORMANCE EVALUATION

We implemented CRANE using Python 2.7 and we
evaluated its performances in two phases. We analytically
compared the performances of CRANE, OpenStack Swift
and the optimal replica migration schedule. Then we
conduct experiments to compare performance of crane with
OpenStack Swift performances.

The main performance metric for replica migration
between geographically distributed data centers is latency
[12], [15], [16], which is derived from link capacity.
Moreover, in [31] and [32] authors have empirically
studied the network performance features of data centers
in a geo-distributed cloud environment. They observe
that the cross-region network performance (including both
bandwidth and latency) is often highly related to the
geographic distance between the regions. This was explicitly
demonstrated through measurements performed on EC2
instances. Therefore, to evaluate our heuristic performances,
we have used Amazon EC2 inter-data center network. This
topology is composed of 7 data centers that are all connected
to each other. We have also used links capacities measured
in [31] through real-world experiments, in order to have a
realistic view of the network state. Table 4 describes these
links capacities.

We considered several scenarios, each having a different
number of partitions and different average partition sizes. In
the beginning of each experiment, we consider only 5 data
centers. After that, two new data centers are connected to
the infrastructure, which triggers the placement algorithm
in order to re-optimize the location of replicas. For replicas
placement, we have used the standard Swift algorithm
stipulating that for each data partition, three replicas have to

be created and placed according to the as-unique-as possible
algorithm.

Furthermore, the required availability is assumed to be
A
M , where A is the minimum number of replicas to be kept
stable and M is the total number of replicas per partition.
To ensure availability, Swift restricts the migration of one
replica in the same sequence. This assumes if 2 out of the 3
replicas are available, the data is considered to be available
(i.e., all user requests can be accommodated). Hence, the
minimum required availability per partition is set to 2/3.

Our experimental results have validated that, by
optimally scheduling replicas to migrate, CRANE reduces
migration time and the amount of data to migrate.

6.1 Analytical Results

For analytical results, we have modeled as an Integer Linear
Programming (ILP) problem the special case of replica
migration problem that minimizes migration time while
ensuring minimum replicas availability per partition. We
have implemented this model with AMPL [11] language.
We used IBM CPLEX Optimizer [10] to find the optimal
migration plan that reduces migration time and avoids
redundancy. We considered eight scenarios as depicted in
Table 5. For instance, we consider that we have 3 replicas
for each partition. In the first four scenarios, partitions
size vary between 500 Mb and 1 Gb. For the four last
scenarios, partitions size vary between 1 Gb and 5 Gb. We
distribute these partitions across the 5 data centers, this
describes the initial replica placement. Then, we add two
new data centers, we trigger replica placement algorithm to
re-optimize replica placement. Considering these initial and
final placements, we emulate Swift and CRANE operations
and compare their theoretical performances to the optimal
solution for each scenario.

To ensure high partitions availability, OpenStack Swift
relocates only one replica of a partition at each new
replica placement. Then, it needs to compute a new replica
placement to relocate other replicas of these partitions
if needed. This can be executed after more than one
hour. Having bulk data transfers, we have evaluated
performances of executing the placement algorithm after
one hour and after two hours, for Swift migrations. The
execution of the placement algorithms computes the new
placement of replicas and trigger the migration algorithm to
relocate replicas to their new location.

Fig. 3(a) and Fig. 3(c) represents migration time and
the amount of transferred data respectively for scenarios
Sc1, Sc2, Sc3 and Sc4. For Sc1, Swift, CRANE and the
optimal replica migration plans, have taken 8 min to create
16 new replicas. Moreover, the amount of transferred data
is the same. For Sc2, to migrate 32 partitions, the total
amount of transferred data is 25 Gb. The optimal replica
migration plan has taken 2 minutes less than CRANE and
Swift replica migration plans. For Sc3, CRANE and the
optimal replica migration plans, have the same amount of
transferred data, whereas Swift transfers 30% more data.
The optimal algorithm performs 15% better than CRANE,
and 35% better than Swift. For Sc4, Swift transfers 40%
more data than CRANE and the optimal migration plan, in
twice the optimal migration time. However, CRANE has an

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

10

TABLE 4
EC2 inter-data center link capacities

Link capacity
(Mbps)

North
California Oregon Virginia Sao Paulo Ireland Singapore Tokyo

North California - 520 252 116 98 103 173
Oregon 545 - 215 81 104 81 152
Virginia 240 210 - 139 221 81 110
Sao Paulo 40 60 11 - 22 9 62
Ireland 106 135 215 90 - 77 76
Singapore 125 110 84 57 80 - 242
Tokyo 178 143 99 61 43 116 -

(a) Migration time for smaller partitions (b) Migration time for larger partitions

(c) Transferred data for smaller partitions (d) Transferred data for larger partitions

Fig. 3. Analytical performance comparison between optimal migration plan, CRANE and traditional Swift

TABLE 5
Deployment scenarios

Scenario Number
of
partitions

Number of
replicas to
migrate

Average
replica
size (Mb)

Replica
placement
computation

Sc1 16 16 750 1 hour
Sc2 32 32 750 1 hour
Sc3 64 80 750 1 hour
Sc4 128 160 750 1 hour
Sc5 16 16 3074 2 hours
Sc6 32 32 3074 2 hours
Sc7 64 80 3074 2 hours
Sc8 128 160 3074 2 hours

optimal amount of transferred data and have also improved
migration time by 30% compared to Swift.

Fig. 3(b) and Fig. 3(d) represent the migration time and
the amount of transferred data respectively for scenarios

Sc5, Sc6, Sc7 and Sc8. The scenarios have bigger replicas
size varying from 1Gb to 5Gb. Fig. 3(d) shows that CRANE
has an optimal amount of transferred data, for the 4
scenarios. However, Swift transfers 15% more replicas for
Sc5 and Sc6, and 35% and 45% more data in Sc7 and Sc8,
respectively. This have also induced higher migration time,
35% higher than the optimal migration plan for the Sc5 and
Sc6, and 45% and 60% higher than the optimal migration
plan for the Sc7 and Sc8, respectively. In the other hand,
CRANE achieves replica migration times 15% higher than
the optimal migration plan for Sc5 and Sc6, around 20% for
Sc7 and 30% for Sc8.

From these different scenarios, we can conclude that
CRANE migration time is around 20% close to the
optimal migration plan time. And achieves around 40%
improvement compared to the Swift migration time. That
is, the time needed to migrate replicas have been highly

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

11

improved.

6.2 Experimentation
6.2.1 Setup environment
OpenStack Swift requires at least one proxy node and
several storage nodes. The proxy node accepts requests to
upload files, modify metadata, and create containers. The
storage nodes manage objects and containers in a distributed
manner. For our experiments, we would be interested in
replicas migration. We have used the open-source software
platform for cloud computing OpenStack [33] to create the
infrastructure. Thus, we consider that each storage node is
an instance hosted in one data center. Indeed, we have
launched 8 Ubuntu 14.04 medium instances with 2 compute
units and 2 Gb memory. We have attached a 200Gb disk
to each storage instance. Each instance is launched in a
different network linked with a virtual router. Then we have
fixed bandwidths on the router’s interfaces as described in
Table 4, with Linux commands.

In the beginning of each scenario, we consider only
5 data centers. After that, two new data centers are
connected to the infrastructure, which triggers the Swift
placement algorithm in order to re-optimize the location
of replicas. Then we use either Swift migration algorithm
or CRANE algorithm to migrate replicas to the computed
optimal locations. We deployed four scenarios considering
64 partitions with 3 replicas each one like recommended by
some OpenStack providers [34]. And, we varied the average
size of replicas. Table 6 depicts these scenarios.

TABLE 6
Experimental deployment scenarios

Scenario Number of partitions Average replica size
(Gb)

Sc9 64 3
Sc10 64 10
Sc11 64 15

For each scenario, depicted in Table 6, we compare
CRANE with traditional Swift with respect to the following
performance metrics: (1) the total migration time, (2) the
amount of inter-data centers exchanged data, (3) the idle
time and (4) the availability of replicas per partition. We
considered two Swift configurations, one computing the
replica placement each hour and the other each two hours.

6.2.2 Results
Fig. 4(a) shows the total migration time for the considered
scenarios. As we can see, in all scenarios, CRANE
outperforms the Swift algorithm by a good margin for
both configurations. For Sc9, CRANE takes 50 minutes
to create all the replicas compared to 75 minutes for the
1-hour Swift algorithm and 132 minutes for the 2-hours
Swift algorithm. This constitutes around 35% and 65% of
improvement comparing to the 1-hour Swift algorithm and
to the 2-hours Swift algorithm respectively. For Sc10 and
Sc11, CRANE also achieves 30% and 50% improvements
compared to the 1-hour and the 2-hours Swift configuration.

This obtained improvement can be explained by the fact that
CRANE always chooses to copy the replica incurring the
minimal transmission time. As migration time depicts the
time that takes the servers to transfer all replicas to their new
placement, it’s also influenced by the idle time. As depicted
in Fig. 4(c), idle time for CRANE is always zero.

As CRANE compose parallel replica migrations that
ensure minimum replica availability and migrate them
sequentially and directly, it ensures minimum replica
availability and avoids idle time. However, the idle time
is higher for the 1-hour and 2-hours Swift configurations.
Indeed, for Sc9, we see that the 2-hours Swift configuration,
idle time is 85 minutes. As the amount of data can be
transferred rapidly, the system will be idle for 85 minutes
waiting for the new replica placement. During this time,
the replicas aren’t in their optimal locations so the system
is performing sub-optimally. The more the amount of
transferred data is high, the more the idle time is lower.

The amount of inter-data centers transferred data is
reported in Fig. 4(b). For the 3 scenarios, the CRANE
algorithm minimizes that data amount to be transferred.
The improvement is around 25% with the 1-hour Swift
configuration and 45% with the 2-hours Swift configuration.
This improvement is explained by the avoidance of
redundant copy of the replicas of the same partition. This
is also explained by the fact that Swift computes at each
time a new replica placement. At each replica placement
the replicas are as-far-as possible from each other and
distributed in a same way over the disks. This will induce
needless migrations that are just triggered in order balance
the replicas on disks and make the replicas of each partition
far from each other, even if this placement isn’t the optimal
one. This have also induced the improvement in migration
time showed in Fig. 4(a).

Finally, Fig. 4(d) shows the Inverse Cumulative
Distribution Function (ICDF) of the availability. For a
given availability, it provides the probability of having that
availability or higher. The required minimum availability
per partition (2/3 = 0.66) isn’t met for the 1-hour Swift
configuration. The probability of having an availability
higher than 66% is 0.98. The 1-hour that separate the two
new replica placement haven’t been enough to ensure the
availability. Indeed, there are two replicas of the same
partition that are not available. However, the probability
of having a high availability is always higher for the
CRANE algorithm than the traditional Swift. For instance,
the probability of having an availability higher than 80%
is 0.60 for Swift whereas it is around 0.76 for CRANE.
If compare the three curves, we can see that, on average,
CRANE improves availability by up to 10%.

It is clear that CRANE performs significantly better than
the basic Swift algorithm as it carefully selects the replica
from which the data should be copied, the paths used to
transmit that data while avoiding the redundant copy of
replicas and eliminating idle time.

7 CONCLUSION

Data replication has been widely adopted to improve data
availability and to reduce access time. However, replica
placement systems usually need to migrate and create a

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

12

(a) Migration time (b) Amount of transferred data

(c) Idle time (d) Availability

Fig. 4. Experimental performance comparison between CRANE and traditional Swift

large number of replicas between and within data centers,
incurring a large overhead in terms of network load
and availability. In this paper, we proposed CRANE, an
effiCient Replica migrAtion scheme for distributed cloud
Storage systEms. CRANE complements replica placement
algorithms by efficiently managing replica creation by
minimizing the time needed to copy data to the new replica
location while avoiding network congestion and ensuring
the required availability of the data. In order to evaluate
the performance of CRANE, we compare it to the optimal
solution for the replica migration problem considering
availability and to the standard swift, the OpenStack project
for managing data storage. Results show that CRANE has
sub-optimal performances in terms of migration time and an
optimal amount of transferred data. Moreover, experiments
show that CRANE is able to reduce up to 60% of the replica
creation time and 50% of inter-data center network traffic
and provide better data availability during the process of
replica migration. In our future work, we will perform larger
scale simulations to further scrutinize the performance of
our heuristic. Other improvements will also considered to
address reliability and consistency requirements.

8 ACKNOWLEDGEMENT

This work was supported in part by the Quebec FRQNT
postdoctoral research fellowship.

REFERENCES

[1] B. A. Milani and N. J. Navimipour, “A comprehensive review of
the data replication techniques in the cloud environments: Major

trends and future directions,” Journal of Network and Computer
Applications, vol. 64, pp. 229–238, 2016.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google file system.
ACM, 2003, vol. 37, no. 5.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in IEEE Symposium on Mass Storage
Systems and Technologies (MSST), 2010.

[4] R.-S. Chang and H.-P. Chang, “A dynamic data replication strategy
using access-weights in data grids,” The Journal of Supercomputing,
vol. 45, no. 3, 2008.

[5] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “CDRM:
A cost-effective dynamic replication management scheme for
cloud storage cluster,” in IEEE International Conference on Cluster
Computing (CLUSTER),, 2010, pp. 188–196.

[6] D.-W. Sun, G.-R. Chang, S. Gao, L.-Z. Jin, and X.-W. Wang,
“Modeling a dynamic data replication strategy to increase
system availability in cloud computing environments,” Journal of
Computer Science and Technology, vol. 27, no. 2, pp. 256–272, 2012.

[7] Y. Chen, S. Jain, V. Adhikari, Z.-L. Zhang, and K. Xu, “A first look
at inter-data center traffic characteristics via Yahoo! datasets,” in
IEEE INFOCOM, April 2011, pp. 1620–1628.

[8] O. foundation. (2015) Swift documentation. [Online]. Available:
http://docs.openstack.org/developer/swift/

[9] A. Mseddi, M. A. Salahuddin, M. F. Zhani, H. Elbiaze, and R. H.
Glitho, “On optimizing replica migration in distributed cloud
storage systems,” in Cloud Networking (CloudNet), 2015 IEEE 4th
International Conference on. IEEE, 2015, pp. 191–197.

[10] (2016) IBM CPLEX Optimizer. [Online]. Available:
http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/

[11] (2016) Ampl: Streamlined modeling for real optimization.
[Online]. Available: http://ampl.com

[12] J. Hall, J. Hartline, A. R. Karlin, J. Saia, and J. Wilkes, “On
algorithms for efficient data migration,” in Proceedings of the twelfth
annual ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics, 2001, pp. 620–629.

[13] E. Anderson, J. Hall, J. Hartline, M. Hobbes, A. Karlin, J. Saia,

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

13

R. Swaminathan, and J. Wilkes, “Algorithms for data migration,”
Algorithmica, vol. 57, no. 2, pp. 349–380, 2010.

[14] C. Kari, Y.-A. Kim, and A. Russell, “Data migration in
heterogeneous storage systems,” in IEEE International Conference
on Distributed Computing Systems (ICDCS), 2011, pp. 143–150.

[15] Y. Wu, Z. Zhang, C. Wu, C. Guo, Z. Li, and F. Lau, “Orchestrating
bulk data transfers across geo-distributed datacenters,” Cloud
Computing, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[16] C. Lu, G. A. Alvarez, and J. Wilkes, “Aqueduct: Online data
migration with performance guarantees,” in FAST, vol. 2, 2002,
p. 21.

[17] D. L. Petrov and Y. S. Tatarinov, “Data migration in the scalable
storage cloud,” in Ultra Modern Telecommunications & Workshops,
2009. ICUMT’09. International Conference on. IEEE, 2009, pp. 1–4.

[18] Data Center Research. (2018) Colocation data centers. [Online].
Available: http://www.datacentermap.com/datacenters.html

[19] Synergy Research Group. (2017) Hyperscale data center
count approaches the 400 mark. [Online]. Available:
https://www.srgresearch.com/articles/hyperscale-data-center-
count-approaches-400-mark-us-still-dominates

[20] “Cisco global cloud index: Forecast and methodology, 20162021,”
White Paper, Cisco, 2018.

[21] James Hamilton. (2010) Inter-datacenter replication
and geo-redundancy. [Online]. Available:
http://perspectives.mvdirona.com/2010/05/inter-datacenter-
replication-geo-redundancy/

[22] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman,
and H. Bhogan, “Volley: Automated data placement for
geo-distributed cloud services,” 2010.

[23] S. Khuller, Y.-A. Kim, and Y.-C. J. Wan, “Algorithms for data
migration with cloning,” in ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, ser. PODS, 2003.

[24] N. Tziritas, T. Loukopoulos, P. Lampsas, and S. Lalis, “Formal
model and scheduling heuristics for the replica migration
problem,” in Euro-Par 2008–Parallel Processing. Springer, 2008,
pp. 305–314.

[25] N. Tziritas, T. Loukopoulos, P. Lampsas, and S. Lalis, “Using
multicast transfers in the replica migration problem: Formulation
and scheduling heuristics,” in Euro-Par 2009 Parallel Processing.
Springer, 2009, pp. 228–240.

[26] T. Loukopoulos, N. Tziritas, P. Lampsas, and S. Lalis,
“Implementing replica placements: feasibility and cost
minimization,” in Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International. IEEE, 2007, pp. 1–10.

[27] T. Loukopoulos, N. Tziritas, P. Lampsas, and S. Lalis,
“Investigating the replica transfer scheduling problem,” in Proc.
18 th Int. Conf. on Parallel and Distributed Computing and Systems
(PDCS06). Citeseer, 2006.

[28] J. Dickinson. (2013) Data placement in Swift. [Online]. Available:
http://swiftstack.com/blog/2013/02/25/data-placement-in-swift

[29] Stephen Richardson. (2017) The pros and cons of
a dedicated management network. [Online]. Available:
https://www.ccexpert.us/network-management/the-pros-and-
cons-of-a-dedicated-management-network.html

[30] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al.,
“Onix: A distributed control platform for large-scale production
networks.” in OSDI, vol. 10, 2010, pp. 1–6.

[31] Y. Feng, B. Li, and B. Li, “Jetway: Minimizing costs on
inter-datacenter video traffic,” in Proceedings of the 20th ACM
international conference on Multimedia. ACM, 2012, pp. 259–268.

[32] A. C. Zhou, Y. Gong, B. He, and J. Zhai, “Efficient process
mapping in geo-distributed cloud data centers,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2017, p. 16.

[33] (2016) OpenStack cloud computing software. [Online]. Available:
http://www.openstack.org

[34] Rackspace. (2016) Swift ring calculator. [Online]. Available:
https://rackerlabs.github.io/swift-ppc/

Amina Mseddi is a master student with the
Department of Computer Science, University of
Quebec at Montreal. She received her Engineer
degree in networks and telecommunications
from Institut National des Sciences Appliquées
et de Technologies in 2013. Her research
interests include resource management in
large-scale distributed systems, content delivery
networks, cloud computing and software-defined
networking.

Mohammad A. Salahuddin is a postdoctoral
fellow at the David R. Cheriton School of
Computer Science at the University of Waterloo,
Waterloo, Ontario, Canada. He holds a Ph.D.
in Computer Science from Western Michigan
University (Kalamazoo, Michigan, USA–2014).
His research interests include Wireless Sensor
Networks, QoS and QoE in Vehicular Ad hoc
Networks (WAVE, IEEE 802.11p and IEEE
1609.4), Internet of Things, Content Delivery
Networks, Software-Defined Networking,

Network Functions Virtualization and Cloud Resource Management.
He serves as a Technical Program Committee member for international
conferences and is a reviewer for various peer-reviewed journals,
magazines and conferences.

Mohamed Faten Zhani is currently an assistant
professor with the department of software
and IT engineering at l’École de Technologie
Suprieure (ÉTS) at the University of Quebec
in Canada. He received his Ph.D. in Computer
Science from the University of Quebec in
Montreal, Canada in 2011. He then carried
out his postdoctoral research at the David R.
Cheriton School of Computer Science at the
University of Waterloo. His research interests
include cloud computing, virtualization, Big Data,

software-defined networking and resource management in large-scale
distributed systems.

Halima Elbiaze holds a Ph.D. in computer
science and a M.Sc in Telecommunication
systems from Institut National des
Tlcommunications, Paris, France and Universit
de Versailles in 2002 and 1998, and B.S. Degree
in applied mathematics from university of MV,
Morocco in 1996. Since 2003, she is with the
Department of Computer Science, Universit
du Qubec Montral, QC, Canada, where she
is currently an Associate Professor. She is
the author or coauthor of many journal and

conference papers. Her research interests include network performance
evaluation, traffic engineering, quality of service management in optical
and wireless networks.

2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858792, IEEE
Transactions on Cloud Computing

14

Roch Glitho [SM] holds a Ph.D. (Tekn. Dr.) in
tele-informatics (Royal Institute of Technology,
Stockholm, Sweden), and M.Sc. degrees in
business economics (University of Grenoble,
France), pure mathematics (University Geneva,
Switzerland), and computer science (University
of Geneva). He is an Associate Professor of
networking and telecommunications at the
Concordia Institute of Information Systems
Engineering (CIISE), Concordia University,
Montreal, Canada, where he holds a Canada

Research Chair in End-User Service Engineering for Communication
Networks. He is also an Adjunct Professor at Telecom Sud-Paris in
France and at the University of Western Cape in South Africa. In the
past he has worked in industry for almost a quarter of a century and has
held several senior technical positions at LM Ericsson in Sweden and
Canada (e.g. expert, principal engineer, senior specialist). In the past
he has also served as IEEE Communications Society distinguished
lecturer, Editor-In-Chief of IEEE Communications Magazine and
Editor-In-Chief of IEEE Communications Surveys & Tutorials.

